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Abstract 

Current approaches to word sense disambiguation use and 
combine various machine-learning techniques. Most refer to 
characteristics of the ambiguous word and surrounding words 
and are based on hundreds of examples. Unfortunately, de-
veloping large training sets is time-consuming. We investigate 
the use of symbolic knowledge to augment machine-learning 
techniques for small datasets. UMLS semantic types assigned 
to concepts found in the sentence and relationships between 
these semantic types form the knowledge base. A naïve Bayes 
classifier was trained for 15 words with 100 examples for 
each. The most frequent sense of a word served as the base-
line. The effect of increasingly accurate symbolic knowledge 
was evaluated in eight experimental conditions. Performance 
was measured by accuracy based on 10-fold cross-validation. 
The best condition used only the semantic types of the words 
in the sentence. Accuracy was then on average 10% higher 
than the baseline; however, it varied from 8% deterioration to 
29% improvement. In a follow-up evaluation, we noted a 
trend that the best disambiguation was found for words that 
were the least troublesome to the human evaluators. 

Keywords:  Artificial intelligence, machine learning, naïve 
Bayes, word sense disambiguation, Unified Medical Lan-
guage System, UMLS, small datasets, symbolic knowledge 

Introduction  

 

Although many words we use in conversation and writing are 
ambiguous, we usually do not experience problems with in-
terpreting these words in their context. This is, however, not 
easily accomplished with automated methods. Since this is an 
important issue for machine translation, information retrieval, 
thematic analysis, or any type of speech and text processing, 
many researchers have devoted time to word sense disam-
biguation (WSD). WSD techniques choose the correct sense 
for a word from a predefined set of available senses. Most 
existing techniques use the surrounding words and specific 

features of these to learn the correct sense of the ambiguous 
word. They are usually supervised and based on annotated 
dataset where the correct sense is indicated for each instance. 
Ide [1] provides an overview of WSD from the early years 
(1950’s) through the late 1990’s. 

WSD has been done for general words, for domain specific 
words, and across different languages. Often, only a few 
words are disambiguated.  For example, Mooney [2] tested 7 
different learning algorithms to learn the correct sense of 
‘line’ based on its surrounding words. The order of the words 
was not taken into account, which is called a bag-of-words 
approach. Techniques used include naïve Bayes, a perceptron, 
and decision trees among others.  Naïve Bayes was a top per-
former for both accuracy and required training time. With 
1,200 examples, the accuracy was more than 70%, but it was 
less than 60% with 300 examples.  Florian et al. [3] worked 
with the Senseval2 dataset 
(www.itri.brighton.ac.uk/events/senseval/) and used an en-
riched bag-of-words approach that included a weighted bag-
of-lemmas and local n-gram context with specific syntactic 
relations. Their Bayes-based approaches were among the top 
performers for English (approximately 65% accuracy) and the 
best for Spanish, Swedish, and Basque. In further studies, they 
combined classifiers and achieved better accuracy (by about 
1%). Pedersen [4] evaluated the use of bigrams for word sense 
disambiguation. Bigrams are sequences of two words. He 
tested different methods to select bigrams that occur close to 
the ambiguous words (within approximately 50 words to the 
left or right of the ambiguous word) as possible disambigua-
tion features. He tested a decision tree and naïve Bayes classi-
fier. The decision tree with the most accurate disambiguation 
was based on bigrams selected with a power divergence statis-
tic, which is a goodness-of-fit statistic. 

In addition to surrounding words, others drew on information 
available from external sources such as WordNet 
(www.cogsci.princeton.edu/~wn/), a general-English lexical 
reference [5]. Its structure is based on psycholinguistic theo-
ries of human memory and includes different senses for 
words. Inkpen and Hirst [6] used WordNet to disambiguate 
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near-synonyms in dictionary entries. They made use of the 
overlap of words in the dictionary description and WordNet 
glosses, synsets, antonyms, and polysemy information. They 
used a decision tree (C4.5) to select the best combination and 
achieved 83% accuracy. 

In biomedicine, word sense disambiguation has been applied 
to categories of words such as DNA, RNA, and proteins. Hat-
zivassiloglou et al. [7] used three supervised learning tech-
niques, C4.5 decision trees, naïve Bayes, and inductive learn-
ing, and tested different features with an automatically created 
gold standard to distinguish between genes, proteins, and 
mRNA. Their best technique, naïve Bayes, achieved 84% ac-
curacy. Liu et al. [8] evaluated different feature sets and clas-
sifiers in an extensive study to disambiguate biomedical ab-
breviations with automatically created gold standards. They 
trained their classifiers per abbreviation and achieved high 
accuracy (over 90%) especially when there were thousands of 
examples from which to learn. 

A common element in machine learning techniques is reliance 
on large datasets. For example, Mooney [2] used 300, 600, 
and 1,200 examples for training and showed that performance 
increased with more examples. Some researchers have built 
gold standards automatically [7, 8] to sidestep this issue. 
These standards are an excellent approach to comparing dif-
ferent algorithms. However, because they are systematically 
built, they deviate from the standard human experts would 
establish. When Hatzivassiloglou [7] asked human experts to 
assign labels to the same terms as in the artificial gold stan-
dard (the disambiguating terms were deleted), the pair-wise 
agreement of the experts was 78%.  

Our goal is to determine whether symbolic knowledge can be 
used by machine learning algorithms so that they can learn 
from small, human-created gold standards. The rationale is 
that by supplying algorithms with additional, external knowl-
edge, comparable to that of experts, fewer examples will be 
needed for learning. This will be useful since the development 
of annotated datasets is time-consuming and difficult. We take 
advantage of the symbolic knowledge in the biomedical do-
main found in the Unified Medical Language System [9] 
(UMLS).  In addition to using few examples, we also limit the 
input to what can be found in the sentence containing the am-
biguous word. We use the symbolic representation of that 
sentence in the UMLS Semantic Network [10] and do not use 
the actual words surrounding the ambiguous term. In this way, 
our approach, if successful, may augment common bag-of-
word approaches. 

Methods 

Dataset 

This study was performed with a dataset provided by the Na-
tional Library of Medicine (available from 
http://wsd.nlm.nih.gov/), in which eleven human evaluators 
disambiguated words occurring in MEDLINE abstracts [11]. 
The dataset contains 50 English terms, such as cold, mosaic, 
and growth, which are commonly ambiguous. Each ambigu-

ous term can be mapped to multiple UMLS concepts. For each 
word, 100 instances were disambiguated by indicating the 
correct sense with a UMLS concept or the option “None” if 
no UMLS concept described the correct sense. Each instance 
is provided with its original MEDLINE abstract. Linguistic 
and symbolic knowledge is made available for all terms in the 
entire abstract. MetaMap [12] (available at 
http://mmtx.nlm.nih.gov/) was used to provide the linguistic 
information, e.g., part of speech (POS), and to map all terms 
to UMLS concepts and semantic types. All these mappings are 
provided in the online dataset.  

Our purpose was to train a machine learning technique that 
can disambiguate the words by choosing the correct mapping. 
Each mapped concept is also connected to semantic types in 
the UMLS Semantic Network. We used these semantic types 
to represent the different meanings of ambiguous terms. For 
example, based on the UMLS, there are three senses and their 
related semantic types for “blood pressure.” One extra sense is 
added to be used when none of the previous ones is correct. 
The UMLS concepts and semantic types are: Blood Pressure 
(Organism Function), Blood Pressure Determination (Diag-
nostic Procedure), Arterial Pressure (Laboratory or Test Re-
sult), and None of the Above. 

Disambiguation Study 

We chose a naïve Bayes classifier since it was a top performer 
in several other word sense disambiguation studies. A naïve 
Bayes classifier is based on Bayes’ probability rules. It takes 
all presented information into account and is called naïve be-
cause it assumes independence between all the features pre-
sented to it. We used the Weka software packet to train and 
test the classifier with 10-fold cross-validation [13].  

We report on eight conditions in which symbolic knowledge 
is cumulatively added to each condition. All knowledge is 
based on the sentence in which the ambiguous word appears. 
The intuition is that more complete symbolic information 
about the ambiguous word, its surroundings or context, and 
how the word interacts with this context will lead to better 
disambiguation.  

Figure 1 visualizes the relation between the available sym-
bolic knowledge and the experimental conditions. There are 
two types of basic information about the ambiguous word that 
we used. The word’s status in the phrase: single words or 
heads of phrases are denoted as main words (MW). We also 
use the word’s part of speech (POS). Four additional types of 
symbolic knowledge about the ambiguous word’s context are 
evaluated. Phrase types (P-Types) are the semantic types of 
words in the same phrase as the ambiguous word. Sentence 
types (S-Types) are the semantic types of all other unambigu-
ous words in the sentence. We believed that additional sym-
bolic knowledge could improve the accuracy of the classifier, 
and included additional details of the context surrounding the 
ambiguous word with core (CRel) and non-core (NCRel) rela-
tions. These are Semantic Network relations between the un-
ambiguous semantic types found in the sentence. The UMLS 
Semantic Network has 54 relations that can exist between 135 
semantic types. We considered the following seven relations 
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to be core relations because they closely link concepts in a 
hierarchical fashion: is a, conceptual part of, consists of, con-
tains, ingredient of, part of, and process of.   

Finally, we evaluated how each ambiguous sense fits into its 
surrounding context. To test this, we added the semantic rela-
tions that each ambiguous type can have with its surrounding 
types (Sense Activation) as a feature to be used by the classi-
fier. The rationale was that the correct sense would have more 
interaction with the surroundings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Symbolic Knowledge Used (ST = Semantic Types) 

Results 

Disambiguation Results 

We selected 15 words from the NLM dataset for which the 
most frequent sense was correct in less than 65% of the in-
stances. This “majority sense performance” served as the 
baseline for our study. Table 1 provides an overview of the 
accuracy for each word in each condition and the average im-
provement. As mentioned above, additional information is 
added in each condition. For easy reference, we have num-
bered the conditions, e.g. the baseline is (0). The last two rows 
in the table provide the results for pair-wise t-test between the 
experimental conditions and the baseline (Baseline compari-
son) and between consecutive experimental conditions (In-
cremental comparison, e.g., 0 vs. 1, 1 vs. 2). 

In the first condition (1), we evaluated the importance of the 
ambiguous word being a single word or head of a phrase 
(main word) or not. Although the effect was small for most 
words, for “scale” and “weight,” accuracy increased by 14% 
and 19% compared to the baseline (0). Overall, the improve-
ment in accuracy was significant.  

Providing additional information about the ambiguous word’s 
part of speech (2) increased accuracy slightly for two terms 
(nutrition, repair) but decreased accuracy for several other 
terms. The differences were not significant.  

Adding the semantic types of unambiguous words occurring 
in the same phrase as the ambiguous word (3) led to increased 
performance in several cases (man, mosaic, repair, scale, 
weight, white) but caused deterioration in a few others. Al-
though on average performance improved compared to the 

previous condition and the baseline, the difference was not 
significant. When the semantic types of all unambiguous 
words in the sentence (4) were also available for learning, 
average accuracy was at its peak (66%). This condition was 
significantly more accurate than the previous and the baseline. 
For some words, disambiguation accuracy increased by 20 to 
30% compared to the baseline. 

To increase the detail of the surrounding context, we added 
the semantic relations between the unambiguous semantic 
types that form the context. In conditions 5a the non-core rela-
tions are added, while in 6a both core and non-core relation 
are added. Including information about non-core relations (5a) 
has a significant adverse affect on accuracy. The core relation 
information had a small beneficial effect for some words, but 
the effect was not significant. 

Since performance decreased drastically in these conditions, 
we decided not to pursue them further, but rather to add in-
formation about sense activation (5b and 6b) to condition 4.  
Sense activation consists of the relations the different am-
biguous types can have with the unambiguous context. Sense 
activation based on non-core relations (5b) had a significant 
adverse effect on accuracy.  Core sense activation lowered 
accuracy for most words compared to condition (4); however, 
this difference was no longer significant. 

Troublesome Instances 

Several words responded well to the experimental conditions, 
while others did not. For example, “repair” had almost 30% 
increased accuracy in condition 4 compared to the baseline, 
but the accuracy for “blood pressure” was actually lower in 
condition 4 than in the baseline. 

To find an explanation, we asked whether there was a relation 
between the baseline performance for each word, the ambigu-
ity in the instances for each word, and the actual accuracy.  
Figure 2 shows our expectations for accuracy determined by 
baseline accuracy (part A) or example ambiguity (part B). 
When the baseline is low, one would expect improvement to 
be easier to achieve because there are more examples to learn 
from per sense (the baseline is the maximum percent correct 
from one sense) and because there is more room for improve-
ment. Similarly, for clear, unambiguous examples, the ambi-
guity is low and one would expect better learning and so bet-
ter performance. For troublesome instances, one expects lower 
performance. 

 

 

 

 

 

 

 

Figure 2: Expected Accuracy Improvement 



Table 1: Accuracy of the naïve Bayes classifier for word sense disambiguation 

% Accuracy Baseline Information Provided to Classifier (Experimental Condition) 
 
 
 
 
 
Word 

Maj. S. 
(0) 

MW 
(1) 

MW 
POS 
(2) 

MW 
POS 

P-Types 
(3) 

 

MW 
POS 

P-Types 
S-Type 

(4) 

MW 
POS 

P-Types 
S-Types 
NC. Rel. 

(5a) 

MW 
POS 

P-Types 
S-Types 
NC. Rel. 
H. Rel. 

(6a) 

MW 
POS 

P-Types 
S-Types 

NC. Sense Act. 
(5b) 

MW 
POS 

P-Types 
S-Types 

NC. Sense Act 
C. Sense Act 

(6b) 
Adjustment 62 62 62 62 57 50 51 48 50 
Blood pressure 54 54 51 51 46 56 54 48 48 
Degree 63 66 66 64 68 60 59 67 70 
Evaluation 50 50 50 45 57 53 55 53 54 
Growth 63 63 63 62 62 50 50 56 60 
Immunosuppression 59 57 57 54 63 61 64 67 65 
Man 58 62 58 74 80 62 66 70 70 
Mosaic 52 52 46 69 66 42 42 52 56 
Nutrition 45 45 53 49 48 37 39 38 40 
Radiation 61 61 61 60 72 54 54 63 62 
Repair 52 57 58 62 81 68 62 70 69 
Scale 65 79 79 82 84 72 71 71 72 
Sensitivity 48 54 54 51 70 65 66 70 70 
Weight 47 66 66 71 68 54 53 62 59 
White 49 49 49 56 62 48 50 59 59 
Average 55 58 58 61 66 55 56 60 60 
Baseline comparison: 
t-test, α .05, p-value: 

 (0 vs.1) 
.05 

 (0 vs. 3) 
< .05 

(0 vs. 4) 
< .005 

   (0 vs. 6b) 
< .05 

Incremental comparison: 
t-test, α .05, p-value: 

 (0 vs. 1) 
.05 

  (3 vs. 4) 
< .05 

(4 vs. 5a) 
< .001 

 (4 vs. 5b) 
< .001 

 

 
To explore these ideas, we ordered the 15 ambiguous words 
based on their baseline score (Figure 3) as well as based on 
the example ambiguity score (Figure 4). We measured the 
percentage improvement as the improvement in accuracy for 
the best experimental condition (condition 4, semantic types 
of unambiguous words in the sentence) compared with the 
baseline. To calculate example ambiguity we combined the 
number of senses with a measure of how troublesome each 
word was to the human evaluators. The NLM dataset contains 
information about the evaluation of all 100 instances of each 
word by the eleven experts. In some cases, the experts did not 
agree on the correct sense of a word and only chose one sense 
after extensive discussion.  Those requiring discussion are 
reported as “unresolved counts.” We labeled words with many 
senses and troublesome examples (numbers were multiplied) 
as words with high example ambiguity. 

Figure 3 shows that the actual performance improvement for 
the words ordered by their baseline performance. There is no 
improvement with a lower baseline (no significant correla-
tion). However, actual performance seems to increase when 
the example ambiguity is lower (Figure 4). Although this is a 
small test set, a trend can be seen for words with higher ex-
ample ambiguity (left side) to have lower performance scores 
and words with lower example ambiguity to have higher per-
formance scores. We tested the correlation with the Pearson 
coefficient and found a strong trend (one-tailed, r = -0.379, p 
= 0.8). If we exclude the first word (mosaic), the correlation is 
significant (one-tailed, r = -0.725, p < .01). 
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Figure 3: Actual Accuracy Improvement (Baseline-Ordered)) 
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Figure 4: Actual Accuracy Improvement (Ambiguity-Ordered) 



Discussion 

We assumed that more symbolic information would be better, 
but this was not the case. The class of non-core relations had a 
negative effect when they were included in the context infor-
mation. We plan a more detailed evaluation for individual 
semantic relations to look into this effect. We will also look at 
the interaction of the symbolic knowledge with different ma-
chine learning approaches. A few samples showed that the 
results are different with decision trees. 

Although no information about the human evaluators agree-
ment was provided to naïve Bayes classifier, there was a trend 
that better accuracy was achieved with less troublesome in-
stances. This indicates that gold standards developed by mul-
tiple experts display variability and inconsistencies. It would 
be interesting if the classifier could learn to classify for each 
individual experts.  

Conclusions 

The purpose of this study was to discover if symbolic knowl-
edge can be used by machine learning algorithms so that it can 
be added to the common, example-based approach and allow 
learning on smaller datasets. We used a naïve Bayes classifier 
to disambiguate medical terms and the UMLS for its symbolic 
knowledge. Only information from the sentence in which the 
ambiguous word appeared was used.  

We tested 8 different experimental conditions and compared 
them with the majority sense baseline. In each condition more 
information was provided to the naïve Bayes classifier. How-
ever, it was not the condition with the most information that 
resulted in the best performance. Three types of information 
helped accuracy: information about the word being the main 
word or not, UMLS semantic types associated with unambi-
guous words in the sentence, and core relation between the 
context and the ambiguous senses. When evaluating the 
potential causes for the high variability between the perform-
ances of different words, we discovered an unexpected trend 
related to example ambiguity. Words that were troublesome to 
the human evaluators were generally also harder to automati-
cally disambiguate. 

We conclude that using symbolic knowledge for word sense 
disambiguation is a promising approach. Future work will 
include combining and testing other machine learning tech-
niques and comparing the common approach (using the sur-
rounding words) with and without the symbolic knowledge. 
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